

... for a brighter future

ANL Frameworks / Mesh Generation Project Long-Term Planning 2009

Argonne National Labs Sept 9-11, 2009

Timothy J. Tautges Mathematics & Computer Science Division Argonne National Laboratory

A U.S. Department of Energy laboratory managed by The University of Chicago

Introductions

- ANL
 - Alvaro Caceres
 - Dmitry Karpeev
 - Hong-Jun Kim
 - -Rajeev Jain
 - -Robert Smith
 - -Not here:
 - Iulian Grindenau

- UW
 - -Brandon Smith
 - -Chaman Singh Verma
 - Jim Porter
 - Jason Kraftcheck
 - Steve Jackson
 - Not here:
 - Paul Wilson
 - Shengyong Cai

Goals

- Reasonably-detailed plan, in outline form
 - I'll translate to some sort of documentation
- Sense of shared destiny
 - -There is great opportunity right now, let's all share it
- •Individual understanding of the vision, technical plan, and your role in it
 - -For some this may evolve in time
- Individual buy-in on the overall plan

Expectations, Ground Rules

- Long-term planning is difficult, especially now
 - Lots of new people, some with less experience
 - Other factors (distance, funding uncertainty, strong-willed lead, etc.)
- Ground rules help even the playing field
- Expectations:
 - If you have opinions, this is the time to make them known
 - -Current plans/deadlines/directions firm, but will loosen with time
 - -There's no "I" in TEAM, nor in HERD
- •Ground rules for planning exercise:
 - -Show respect for both new ideas and current directions
 - -Value diversity
 - -Try to think both small and big picture
 - Maximize planning quality in the fixed amount of time we have for it

Current Sponsors, ANL & UW, FY10

- •NEAMS (1200k)
 - Framework for multi-physics analysis, mesh generation, enabling tech
- •ITAPS (450k)
 - Interfaces & tools for high-performance, parallel scientific computing
- SISIPHUS (Ice Sheets) (200k)
 - Component-based ice sheet modeling
- TOTAL/Hutchinson Rubber (70k)
 - Advanced mesh generation algorithms
- Mesquite, LDRD, other misc (~150k)
 - –Applications of ITAPS components/tools

Technical Area Summary, Near-Term Tasks

- •Interfaces (iXxx)
 - -MOAB: parallel representation, release 4.0, source restructure
 - -CGM: cubit 11.x update, release 11.x, pyGeom
 - -iField: abstractions, data model, implementation
- Mesh generation
 - MeshKit (algorithms, design)
 - Parallel tet meshing
 - Embedded boundary meshing
 - Mesh refinement (higher-order)

- Solution coupling
 - Higher-order shape functions
 - Parallel scaling
 - Normalization/conservation
 - Applications
- NEAMS/reactor simulation
 - -Nek, UNIC integration
 - -1-way UNIC-Nek coupling
 - -Tjunction Nek benchmark
 - ABTR meshes/scripts
 - StarCCM+ interface
 - DeCart support

- Documentation
 - Parallel mes

- Framework
- Scaling

Project Name, One Sentence Description

Applications

- Nek
- UNIC
- VHTR/Safety
- NEAMS/SHARP
- Fuels campaign

- DAG-MCNPX
- Space reactors
- TOTAL (Hutchinson rubber)
- SISIPHUS (Ice Sheets)
- SciDAC Accelerators

